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If Fexp(i�) are the set of structure factors for a structure f, the amplitudes can be

converted to those of an uncorrelated structure g (amplitude swapping) by

multiplying each F by the positive number G/F. Correspondingly, the image f is

convoluted with k, the Fourier transform of G/F; k has a large peak at the origin,

so that f � k ~ f. For swapped phases, the image f is convoluted with l, the Fourier

transform of exp(i��), where ��, the phase difference between F and G, is a

random variable; l does not have a large peak at the origin, so that f � l does not

resemble f. The paper provides quantitative descriptions of these arguments.

1. Introduction

Phase errors are much more damaging to the quality of the electron-

density function than amplitude errors. Indeed, creating a map using

the structure-factor phases from structure A and the structure-factor

amplitudes from structure B gives a map in which the electron density

is interpretably that from structure A (Ramachandran & Srinivasan,

1970). Similar effects have been noted in other fields (Millane &

Hsiao, 2003). We present a simple way of understanding the origin of

this effect.

2. The theory

Let us consider two unrelated/uncorrelated functions f(x) and

g(x) and their Fourier transforms, FðXÞ exp½i�FðXÞ� and

GðXÞ exp½i�GðXÞ�, respectively:

f ðxÞ ¼
R

FðXÞ expði�FÞ expð�2�ixXÞ dX ð1Þ

gðxÞ ¼
R

GðXÞ expði�GÞ expð�2�ixXÞ dX: ð2Þ

From here on we will usually leave the argument X out of equations

for simplicity, and symbols such as F and G refer to amplitudes, which

are always greater than or equal to zero; phases are included ex-

plicitly.

We combine the phases of G with the amplitudes of F:

hðxÞ ¼
R

F expði�GÞ expð�2�ixXÞ dX: ð3Þ

We can rewrite equation (3) as

hðxÞ ¼

Z
F

G

G
expði�GÞ expð�2�ixXÞ dX

¼

Z
F

G
G expði�GÞ expð�2�ixXÞ dX: ð4Þ

We see that h(x) arises from the transform of a product of two

functions; one is G expði�GÞ and the other is

K �
F

G
: ð5Þ

h(x) is therefore a convolution of the Fourier transforms of these two

functions. The transform of the first is just g(x). K(X) is everywhere

positive and real and is centrosymmetric. Its transform k(x), there-

fore, is a real function with a large peak at the origin; the magnitude

of the peak is given by

kð0Þ ¼
R

KðXÞ dX: ð6Þ

The values of k(x) for x 6¼ 0 are sums of both positive and negative

terms with an expectation value of zero. Hence, k(x) is a noisy delta

function. The convolution of k and g therefore gives a noisy repre-

sentation of g.

Let us now consider the function h(x) in terms of f(x):

hðxÞ ¼
R

F expði�FÞ exp½ið�G � �FÞ� expð�2�ixXÞ dX: ð7Þ

Rewritten in this way, h can be viewed as a convolution of the

transforms of two functions. One is the transform of

F expði�FÞ ¼ f ðxÞ. The other function is

LðXÞ ¼ exp½ið�G � �FÞ�: ð8Þ

The transform l(x) of L(X) does not have a large peak at the origin as

does that of K(X). Instead it has an expectation value of zero

everywhere; it is simply noise without a peak. h(x) is a convolution of

l(x) with f(x) and, therefore, does not give something that resembles f

at all.

3. A quantitative analysis

Let us consider the error function eg which we define as the difference

between h(x) and g(x):

egðxÞ � hðxÞ � gðxÞ

¼
R

F expði�GÞ expð�2�ixXÞ dX

�
R

G expði�GÞ expð�2�ixXÞ dX: ð9Þ

We can rewrite this as follows:

egðxÞ ¼
R
ðF �GÞ expði�GÞ expð�2�ixXÞ dX: ð10Þ

The r.m.s. error is simply equal to the r.m.s. value of (F � G):R
e2

gðxÞ dx ¼
R
½FðXÞ �GðXÞ�2 dX

¼
R

F2ðXÞ dX þ
R

G2ðXÞ dX � 2
R

FG dX: ð11Þ



If F and G are independent, the expected error is

he2
giexp ¼ hF

2
i þ hG2

i � 2hFihGi: ð12Þ

We can also predict the correlation coefficients for h with g:

ccg �
R

hðxÞgðxÞ dx
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hF2ihG2i

p
¼
R

dx
R

F expði�GÞ expð�2�ixXÞ dX

�
R

G expði�GÞ expð�2�ixYÞ dY
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hF2ihG2i

p
: ð13Þ

By integrating over x first, we obtain

ccg ¼
R

FG dX
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hF2ihG2i

p
: ð14Þ

Because F and G are assumed independent,

ccg;exp ¼ hFihGi
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hF2ihG2i

p
: ð15Þ

If we now look at the difference between h and f, we get

ef ðxÞ � hðxÞ � f ðxÞ

¼
R

F expði�GÞ expð�2�ixXÞ dX

�
R

F expði�FÞ expð�2�ixXÞ dX

¼
R

F½expði�GÞ � expði�FÞ� expð�2�ixXÞ dX ð16Þ

andR
e2

f ðxÞ dx ¼
R R

F½expði�GÞ � expði�FÞ� expð�2�ixXÞ dX

�
R

F½expði�GÞ � expði�FÞ� expð�2�ixYÞ dY dx:

ð17Þ

Integrating first over x, we find

he2
f i ¼

R
F2½expði�GÞ � expði�FÞ�½expð�i�GÞ � expð�i�FÞ�

� expð�2�ixXÞ dX

¼
R

F2f2� exp½ið�G � �FÞ� � exp½ið�F � �GÞ�g expð�2�ixXÞ dX:

ð18Þ

If �F and �G are independent,

he2
f iexp ¼ 2hF2

i: ð19Þ

The correlation coefficient of h and f is

ccf �
R

hðxÞf ðxÞ dx
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hF2ihF2i

p
¼
R

dx
R

F expði�GÞ expð�2�ixXÞ dX

�
R

F expði�FÞ expð�2�ixYÞ dY
� ffiffiffiffiffiffiffiffiffiffiffi

2hF2i
p

: ð20Þ

Again doing the integration over x first, we obtain:

ccf ¼
R

F2 exp½ið�G � �FÞ� dX ð21aÞ

because �F and �G are assumed independent

ccf ;exp ¼ 0: ð21bÞ

By evaluating hFi and hGi using statistics, we can predict values for

the r.m.s. error and the correlation coefficients. From crystallography,

the probability that a Fourier coefficient has a magnitude between F

and F + dF is

PðFÞ dF ¼
2FP

f 2
j

exp �
F2P

f 2
j

" #
dF: ð22Þ

We can substitute
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Figure 1
(a) The pseudo-random noise image corresponding to f(x). The average is
approximately zero and the averaged power is 1. (b) The pseudo-random noise
image corresponding to g(x) has an average power of 1 and an average of about 0.
(c) The image h derived by applying the amplitudes derived from the Fourier
transform of f to the phases of the Fourier transform of g. With careful inspection,
one can see the features of g but not f in h. (d) The error function ef(x) = h(x) �
f(x). (e) The error function eg(x) = h(x) � g(x).

Figure 2
(a) An enlargement of the region around the origin of k(x), the Fourier transform
of K(X), which is defined in equation (5). Note the large peak at the origin. (b) An
enlargement of the region around the origin of l(x), the Fourier transform of L(X)
as defined by equation (8). Note that there is no peak; instead it has the appearance
of a noise image. (c) Line tracings of amplitude versus x taken through the images
of k and l. The two curves are on the same scale. The blue curve is the trace through
k and the red curve is that through l.



X
f 2

j ¼ hF
2
i ð23Þ

PðFÞ dF ¼
2F

hF2i
exp �

F2

hF2i

� �
dF ð24Þ

hFi ¼

Z
FPðFÞ dF

¼

Z
2F2

hF2i
exp �

F2

hF2i

� �
dF

¼

ffiffiffi
�
p

2

ffiffiffiffiffiffiffiffiffi
hF2i

p
ð25Þ

The same applies to hGi, of course. If we set the powers hFi2 and hGi2

to one, we calculate that the mean squared error in h � g will be

he2
giexp ¼ hF

2
i þ hG2

i � 2hFihGi ¼ 1þ 1� �=2 ¼ 0:4290 ð26Þ

and the root mean squared error will be 0.65514.

The correlation coefficient will be

ccg;exp ¼ hFihGi
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hF2ihG2i

p
¼ �=4 ¼ 0:78549 ð27Þ

The mean squared error between h and f is

he2
f iexp ¼ 2hF2

i ¼ 2 ð28Þ

and the r.m.s. error is 1.414.

4. A test using images made from random noise

We tested the theory using 256 by 256 pixel images with pseudo-

random white noise with the powers h f 2
i and hg2

i set to 1 and the

averages hgi and hFi are ~0. The two random images, f and g, are

shown in Figs. 1(a) and 1(b), respectively. The results of combining

the phases of g with the amplitudes of f are shown in Table 1 and Figs.

1 and 2. The function h [equation (3)] is shown in Fig. 1(c), and the

difference images of h � f and h � g are shown in Figs. 1(d) and 1(e),

respectively. Figs. 2(a) and 2(b) show k(x) and l(x). The functions k

and l when convoluted with the starting images g and f, respectively,

would produce h [see equations (4), (5), (7) and (8) and surrounding

text]. Note that k(x) has a large peak at the origin. A trace through

the peak is shown in Fig. 2(c). In contrast, the function l(x) has no

such outstanding peak, consisting primarily of noise. A trace through

the origin of l(x) is shown in Fig. 2(c); it is on the same scale as the

trace shown for k(x). The observed and expected values for r.m.s.

error correlation coefficient are given in Table 1. The agreement, as

expected, is good. The images in Fig. 1 are not particularly useful

because our visual system does not easily pick out features in noise

images. We therefore used more readily interpreted images.

5. A test using faces

We carried out a test using our faces as input (Figs. 3a and b). The

images were 256 by 256 pixels. The average was set to zero and the

power to 1. Figs. 3(c) and 3(d) show the results of putting the phases

of one with the amplitudes of the other. In both cases, the face giving

rise to the phases is clearly recognizable in the hybrid images rather

than the one contributing the amplitudes. Figs. 3(e) and 3( f ) show the

difference maps between the hybrid and the image supplying the

phases. Figs. 3(g) and 3(h) show the difference maps between the

hybrid and the images supplying the amplitudes. Table 2 lists the

observed and expected r.m.s. errors and correlation coefficients. Note

that the correlation coefficients indicate that there is a correlation

between the images. Indeed, the correlation coefficient is about 0.26.
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Figure 3
(a) and (b) are the images of the authors (EEL and DJD, respectively) with the
average set to zero and the average power to 1. (c) The image resulting from
combining the phases of the Fourier transform in (a) with the amplitudes from the
Fourier transform of (b). Note that the resulting image resembles that from which
the phases were obtained. (d) The image resulting from combining the phases of
the Fourier transform in (b) with the amplitudes from the Fourier transform of (a).
Note that the resulting image resembles that from which the phases were obtained.
(e) The error map obtained by subtracting the image in (a) (the image providing the
phases) from the image in (c). ( f ) The error map obtained by subtracting the image
in (b) (the image providing the phases) from the image in (d). (g) The error map
obtained by subtracting the image in (b) (the image supplying the amplitudes) from
the image in (c). (h) The error image obtained by subtracting the image in (a) (the
image supplying the amplitudes) from the image in (d). Similar figures have
appeared previously (Read, 1997, p. 112).



This presumably arises because all faces are grossly similar. The

predicted values for r.m.s. error and cc are in poor agreement because

equations (12) and (15) assume that the input images are uncorre-

lated, which they are not. Because F and G are correlated, hFGi is not

equal to hFihGi; instead, the latter is smaller than the former. Hence

equation (12) overestimates the r.m.s. error and equation (15)

underestimates the correlation coefficient. Because F and G enter

symmetrically in equations (12) and (15), we expect the values for the

observed r.m.s. error and correlation coefficient in rows 1 and 3 to be

identical.

We have thus shown in both qualitative and quantitative ways why

phases rather than amplitudes appear to carry the essential structural

information.

References

Millane, R. P. & Hsiao, W. H. (2003). J. Opt. Soc. Am. A, 20, 753–756.
Ramachandran, G. N. & Srinivasan, R. (1970). Fourier Methods in Crystal-

lography, pp. 60–71. New York: Wiley.
Read, R. J. (1997). Methods Enzymol. 277, 110–128.

short communications

344 Lattman and DeRosier � Phase errors and amplitude errors Acta Cryst. (2008). A64, 341–344

Table 2
The table shows the statistics for the images of the authors’ heads.

l refers to the image of Lattman and d to the image of DeRosier. hl refers to the hybrid image in which the amplitudes are obtained from the image of DeRosier and the phases from that
of Lattman, while hd refers to the hybrid image in which the amplitudes are obtained from the image of Lattman and the phases from that of DeRosier. There are no values predictable by
pure theory because the images are not independent; there is gross similarity between any two faces.

R.m.s. error using image
transform subtraction

Correlation coefficient using
image transform values

R.m.s. error using observed
values

Correlation coefficient using
observed values

hl with l 0.65759
square root equation (11)

0.78379
equation (14)

1.3868
square root equation (12)

0.05294
equation (15)

hl with d 1.141
square root equation (18)

0.34833
equation (21a)

1.4153
square root equation (19)

Not done

hd with d 0.65759
square root equation (11)

0.78379
equation (14)

1.3868
square root equation (12)

0.05294
equation (15)

hd with l 1.2397
square root equation (18)

0.23152
equation (21a)

1.4346
square root equation (19)

Not done

Table 1
The table shows the statistics for two independent noise images.

In column 2, we computed the r.m.s. error according to equations (11) or (18) by subtraction of the transforms of the images. In column 3, we computed the correlation coefficient (cc)
according to equations (14) or (21a), again using image transform values. In columns 4 and 5, we calculated hF2

i and related values from the image transform and used them in the listed
equations to calculate the r.m.s. errors and the correlation coefficients. In columns 6 and 7, we used hF2

i and related values calculated from statistics to calculate the r.m.s. errors and the
correlation coefficients.

R.m.s. error using
image transform
subtraction

Correlation coefficient
using image transform
values

R.m.s. error using
observed values

Correlation coefficient
using observed
values

R.m.s. error using
theoretical values

Correlation coefficient
using theoretical
values

h with g 0.65633
square root equation (11)

0.78462
equation (14)

0.65683
square root equation (12)

0.78429
equation (15)

0.65514
square root equation (26)

0.78540
equation (27)

h with f 1.4155
square root equation (18)

�0.0019
equation (21a)

1.4142
square root equation (19)

Not done 1.414
square root equation (28)

0.00000
equation (21b)


